B. Math. Hons. II Year Semesteral Exam 2001-2002 Algebra IV Date: 08-05-2002 Time: 9.45-12.45 Instructor: B.Sury Answer all questions.

- 1. Let G be a finite subgroup of $GL_n(\mathbb{C})$. Prove that $\exists A \in GL_n(\mathbb{C})$ such
- 2. Let G be a finite abelian group and \hat{G} denote the group $Hom(G, \mathbb{C}^x)$. For any element $\alpha = \sum_g a_g \cdot g$ in $\mathbb{C}[G]$, compute the matrix of α with respect to the two bases $[g:g \in G]$ and $[\sum_g \chi(g)g:\chi \in \hat{G}]$ and conclude that $det(a_{gh^{-1}}) = \prod_{\chi \in \hat{G}} \sum_{g \in G} \chi(g)a_g$. What is this identity for $g = \mathbb{Z}/2$?
- 3. Let G be a finite group and $f, g : G \to \mathbb{C}$ be class functions. Prove Plancherel's formula: $\langle f, g \rangle = \sum_{i=1}^{s} \langle f, \chi_i \rangle \langle \chi_i, g \rangle$ where χ_1, \ldots, χ_s are the irreducible characters of G.
- 4. State and prove Maschke's theorem.

that $AGA^{-1} \subseteq U(n)$.

- 5. Define a left semisimple ring. Show that any finitely generated left A-module over such a ring, is semisimple.
- 6. Prove that the matrix exponential maps a neighbourhood of O in $M_n(\mathbb{R})$ homeomorphically onto a neighbourhood of Id in $GL_n(\mathbb{R})$.
- 7. Let $A \in M_n(\mathbb{C})$. Show that the columns of the matrix e^{tA} form a basis for the vector space of solutions of $\frac{dX}{dt} = AX$. Here X is a column vector with $X^t = (x_1(t), \dots, x_n(t))$.
- 8. If $\rho : G \to GL(V)$ is a finite-dimensional complex representation of a finite group, define the 'contragradient' representation $\rho^* = G \to GL(V^*)$ and the representation $\rho \otimes \rho : G \to GL(V \otimes V)$. Find $\chi_{\rho^*}, \chi_{\rho \otimes \rho}$.
- 9. Let $G \subset GL(n, \mathbb{C})$ be a finite group such that the action of G on \mathbb{C}^n is irreducible. Prove that the centre of G must be cyclic.